12,883 research outputs found

    On transitioning from type-1 to interval type-2 fuzzy logic systems

    Get PDF
    Capturing the uncertainty arising from system noise has been a core feature of fuzzy logic systems (FLSs) for many years. This paper builds on previous work and explores the methodological transition of type-l (Tl) to interval type-2 fuzzy sets (IT2 FSs) for given "levels" of uncertainty. Specifically, we propose to transition from Tl to IT2 FLSs through varying the size of the Footprint Of Uncertainty (FOU) of their respective FSs while maintaining the original FS shape (e.g., triangular) and keeping the size of the FOU over the FS as constant as possible. The latter is important as it enables the systematic relating of FOU size to levels of uncertainty and vice versa, while the former enables an intuitive comparison between the Tl and T2 FSs. The effectiveness of the proposed method is demonstrated through a series of experiments using the well-known Mackey-Glass (MG) time series prediction problem. The results are compared with the results of the IT2 FS creation method introduced in [1] which follows a similar methodology as the proposed approach but does not maintain the membership function (MF) shape

    Improved uncertainty capture for nonsingleton fuzzy systems

    Get PDF
    In non-singleton fuzzy logic systems (NSFLSs), input uncertainties are modelled with input fuzzy sets in order to capture input uncertainty (e.g., sensor noise). The performance of NSFLSs in handling such uncertainties depends on both: the appropriate modelling in the input fuzzy sets of the uncertainties present in the system’s inputs, and on how the input fuzzy sets (and their inherent model of uncertainty) interact with the antecedent and thus affect the inference within the remainder of the NSFLS. This paper proposes a novel development on the latter. Specifically, an alteration to the standard composition method of type-1 fuzzy relations is proposed, and applied to build a new type of NSFLS. The proposed approach is based on employing the centroid of the intersection of input and antecedent sets as origin of the firing degree, rather than the traditional maximum of their intersection, thus making the NSFLS more sensitive to changes in the input’s uncertainty characteristics. The traditional and novel approach to NSFLSs are experimentally compared for two well-known problems of Mackey-Glass and Lorenz chaotic time series predictions, where the NSFLSs’ inputs have been perturbed with different levels of Gaussian noise. Experiments are repeated for system training under noisy and noise-free conditions. Analyses of the results show that the new method outperforms the traditional approach. Moreover, it is shown that while formally more complex, in practice, the new method has no significant computational overhead compared to the standard approach

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Towards a framework for capturing interpretability of hierarchical fuzzy systems - a participatory design approach

    Get PDF
    Hierarchical fuzzy systems (HFSs) have been shown to have the potential to improve the interpretability of fuzzy logic systems (FLSs). However, challenges remain, such as: "How can we measure their interpretability?", "How can we make an informed assessment of how HFSs should be designed to enhance interpretability?". The challenges of measuring the interpretability of HFSs include issues such as their topological structure, the number of layers, the meaning of intermediate variables, and so on. In this paper, an initial framework to measure the interpretability of HFSs is proposed, combined with a participatory user design process to create a specific instance of the framework for an application context. This approach enables the subjective views of a range of practitioners, experts in the design and creation of FLSs, to be taken into account in shaping the design of a generic framework for measuring interpretability in HFSs. This design process and framework are demonstrated through two classification application examples, showing the ability of the resulting index to appropriately capture interpretability as perceived by system design experts

    The Newcastle ENDOPREMℱ: a validated patient reported experience measure for gastrointestinal endoscopy

    Get PDF
    OBJECTIVES: Measuring patient experience of gastrointestinal (GI) procedures is a key component of evaluation of quality of care. Current measures of patient experience within GI endoscopy are largely clinician derived and measured; however, these do not fully represent the experiences of patients themselves. It is important to measure the entirety of experience and not just experience directly during the procedure. We aimed to develop a patient-reported experience measure (PREM) for GI procedures. DESIGN: Phase 1: semi-structured interviews were conducted in patients who had recently undergone GI endoscopy or CT colonography (CTC) (included as a comparator). Thematic analysis identified the aspects of experience important to patients. Phase 2: a question bank was developed from phase 1 findings, and iteratively refined through rounds of cognitive interviews with patients who had undergone GI procedures, resulting in a pilot PREM. Phase 3: patients who had attended for GI endoscopy or CTC were invited to complete the PREM. Psychometric properties were investigated. Phase 4 involved item reduction and refinement. RESULTS: Phase 1: interviews with 35 patients identified six overarching themes: anxiety, expectations, information & communication, embarrassment & dignity, choice & control and comfort. Phase 2: cognitive interviews refined questionnaire items and response options. Phase 3: the PREM was distributed to 1650 patients with 799 completing (48%). Psychometric properties were found to be robust. Phase 4: final questionnaire refined including 54 questions assessing patient experience across five temporal procedural stages. CONCLUSION: This manuscript gives an overview of the development and validation of the Newcastle ENDOPREMℱ, which assesses all aspects of the GI procedure experience from the patient perspective. It may be used to measure patient experience in clinical care and, in research, to compare patients' experiences of different endoscopic interventions

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1

    Get PDF
    Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≀ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases

    The fate of redundant cues: Further analysis of the redundancy effect

    Get PDF
    Pearce, Dopson, Haselgrove, and Esber (Journal of Experimental Psychology: Animal Behavior Processes, 38, 167–179, 2012) conducted a series of experiments with rats and pigeons in which the conditioned responding elicited by two types of redundant cue was compared. One of these redundant cues was a blocked cue X from A+ AX+ training, whereas the other was cue Y from a simple discrimination BY+ CY–. Greater conditioned responding was elicited by X than by Y; we refer to this difference as the redundancy effect. To test an explanation of this effect in terms of comparator theory (Denniston, Savastano, & Miller, 2001), a single group of rats in Experiment 1 received training of the form A+ AX+ BY+ CY–, followed by an A– Y+ discrimination. Responding to the individual cues was tested both before and after the latter discrimination. In addition to a replication of the redundancy effect during the earlier test, we observed stronger responding to B than to X, both during the earlier test and, in contradiction of the theory, after the A– Y+ discrimination. In Experiment 2, a blocking group received A+ AX+, a continuous group received AX+ BX–, and a partial group received AX± BX± training. Subsequent tests with X again demonstrated the redundancy effect, but also revealed a stronger response in the partial than in the continuous group. This pattern of results is difficult to explain with error-correction theories that assume that stimuli compete for associative strength during conditioning. We suggest, instead, that the influence of a redundant cue is determined by its relationship with the event with which it is paired, and by the attention it is paid
    • 

    corecore